Markdown&LaTeX 测试

先测 Markdown。

一级标题

二级标题

三级标题

单引号斜体

单下划线斜体

双引号加粗

双下划线加粗

删除线

使用反斜线开头的~~_*被当做是普通的*_~~

while True : print(input())

#include<iostream>
using namespace std;
int main(){
    cout<<"Hello World!"<<endl;
    return 0;
}

Markdown 标记区块引用的方法是在行的最前面加>

也可以只在整个段落的第一行最前面加上 >

区块引用内部可以嵌套,只要根据层次加上不同数量的 >即可.

我是内部嵌套区块,我可以使用其他 Markdown 语法哦

我是引用区块内使用标题3语法

     //在引用区块内可以加入代码块
     import java.net.URL;
     import java.util.Arrays;
     import java.util.Date;
     import java.util.Set;
  • Red
  • Green
  • Blue
  • Red
  • Green
  • Blue
  • Red
  • Green
  • Blue
  1. Red
  2. Green
  3. Blue

行内式链接标题

![图片](https://cdn.luogu.com.cn/upload/image_hosting/wmx8njk3.png)

图片

https://yunqian-qwq.github.io/






然后是 LaTeX\LaTeX

a˙a¨aˊaˋ\dot{a} \ddot{a} \acute{a} \grave{a}

aˇa˘a~aˉ\check{a} \breve{a} \tilde{a} \bar{a}

a^a^a\hat{a} \widehat{a} \vec{a}

expab=abexpb=eb10m\exp_a b=a^b \exp b=e^b 10^m

sinacosbtancsecdcscecotf\sin a \cos b \tan c \sec d \csc e \cot f

arcsinaarccosbarctanc\arcsin a \arccos b \arctan c

sinhacoshbtanhccothd\sinh a \cosh b \tanh c \coth d

shachbthc\sh a \ch b \th c

argshaargchbargthc\operatorname{argsh} a \operatorname{argch} b \operatorname{argth} c

amin(x,y)max(x,y)\left\vert a\right\vert \min(x,y) \max(x,y)

minxmaxyinfssupt\min x \max y \inf s \sup t

limulim infvlim supw\lim u \liminf v \limsup w

dimpdegqdetmkerϕ\dim p \deg q \det m \ker\phi

Prjhomlzargz\Pr j \hom l \lVert z\rVert \arg z

dtdttψdt \mathrm{d}t \partial t \nabla\psi

ffff(3)y˙y¨\prime \backprime f^\prime f' f'' f^{(3)} \dot{y} \ddot{y}

ð\infty \aleph \complement \backepsilon \eth \Finv \hbar

ıȷk\Im \imath \jmath \Bbbk \ell \mho \wp \Re \circledS

a1(modm)a\equiv1\pmod{m}

amodba\bmod b

gcd(m,n)lcm(m,n)\gcd(m,n) \operatorname{lcm}(m,n)

\mid \nmid \shortmid \nshortmid

a%ba\%b

2nxn\surd \sqrt{2} \sqrt[n]{} \sqrt[n]{x}

+±+ - \pm \mp \dotplus

×÷/\\times \div \divideontimes / \backslash

\cdot * \star \circ \bullet

\boxplus \boxminus \boxtimes \boxdot

\oplus \ominus \otimes \oslash \odot

\circleddash \circledcirc \circledast

\bigoplus \bigotimes \bigodot

{}\{ \} \emptyset \varnothing

\in \notin \not\in \ni \not\ni

\cap \Cap \sqcap \bigcap

\cup \Cup \sqcup \bigcup \bigsqcup \uplus \biguplus

×\setminus \smallsetminus \times

\subset \Subset \sqsubset

\supset \Supset \sqsupset

\subseteq \nsubseteq \subsetneq \varsubsetneq \sqsubseteq

\supseteq \nsupseteq \supsetneq \varsupsetneq \sqsupseteq

\subseteqq \nsubseteqq \subsetneqq \varsubsetneqq

\supseteqq \nsupseteqq \supsetneqq \varsupsetneqq

== \ne \neq \equiv \not\equiv

=def:=\doteq \doteqdot \overset{\underset{def}{}}{=} :=

\sim \nsim \backsim \thicksim \simeq \backsimeq \eqsim \cong \ncong

\approx \thickapprox \approxeq \asymp \propto \varpropto

<< \nless \ll \not\ll \lll \not\lll \lessdot

>> \ngtr \gg \not\gg \ggg \not\ggg \gtrdot

\le \leq \lneq \leqq \nleq \nleqq \lneqq \lvertneqq

\ge \geq \gneq \geqq \ngeq \ngeqq \gneqq \gvertneqq

\lessgtr \lesseqgtr \lesseqqgtr \gtrless \gtreqless \gtreqqless

\leqslant \nleqslant \eqslantless

\geqslant \ngeqslant \eqslantgtr

\lesssim \lnsim \lessapprox \lnapprox

\gtrsim \gnsim \gtrapprox \gnapprox

\prec \nprec \preceq \npreceq \precneqq

\succ \nsucc \succeq \nsucceq \succneqq

\preccurlyeq \curlyeqprec

\succcurlyeq \curlyeqsucc

\precsim \precnsim \precapprox \precnapprox

\succsim \succnsim \succapprox \succnapprox

\parallel \nparallel \shortparallel \nshortparallel

45\perp \angle \sphericalangle \measuredangle 45^\circ

\Box \blacksquare \diamond \Diamond \lozenge \blacklozenge \bigstar

\bigcirc \triangle \bigtriangleup \bigtriangledown

\vartriangle \triangledown \triangleleft \triangleright

\blacktriangle \blacktriangledown \blacktriangleleft \blacktriangleright

\forall \exists \nexists

&\therefore \because \And

\lor \vee \curlyvee \bigvee

\land \wedge \curlywedge \bigwedge

qˉabcˉqabc\bar{q} \bar{abc} \overline{q} \overline{abc}

¬¬\lnot \neg \bot \top

\vdash \dashv \vDash \Vdash \models

\Vvdash \nvdash \nVdash \nvDash \nVDash

\ulcorner \urcorner \llcorner \lrcorner

\Rrightarrow \Lleftarrow

    \Rightarrow \nRightarrow \Longrightarrow \implies

\Leftarrow \nLeftarrow \Longleftarrow

    \Leftrightarrow \nLeftrightarrow \Longleftrightarrow \iff

\Uparrow \Downarrow \Updownarrow

\leftarrow \rightarrow \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow

\uparrow \downarrow \updownarrow \nearrow \searrow \nwarrow \swarrow

\mapsto \longmapsto

\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \leftrightharpoons \rightleftharpoons

\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \rightarrowtail \looparrowright

\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \leftarrowtail \looparrowleft

\hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \twoheadrightarrow \twoheadleftarrow

leftrightLeftRightleft&rightLeft&Right\xleftarrow{left} \xrightarrow{right} \xLeftarrow{Left} \xRightarrow{Right} \xleftrightarrow{left\& right} \xLeftrightarrow{Left\& Right}

⨿%\amalg \% \dagger \ddagger \ldots \cdots

\smile \frown \wr

\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp

\diagup \diagdown \centerdot \ltimes \rtimes \leftthreetimes \rightthreetimes

\eqcirc \circeq \triangleq \bumpeq \Bumpeq \doteqdot \risingdotseq \fallingdotseq

\intercal \barwedge \veebar \doublebarwedge \between \pitchfork

\vartriangleleft \ntriangleleft \vartriangleright \ntriangleright

\trianglelefteq \ntrianglelefteq \trianglerighteq \ntrianglerighteq

LaTeX\LaTeX

a2a^2

a2a_2

a2+2ai,ja^{2+2} a_{i,j}

a22a^2_2

12 ⁣X43{}^2_1\!X^3_4

x˙x¨\dot{x} \ddot{x}

xABABAB^\vec{x} \overleftarrow{AB} \overrightarrow{AB} \widehat{AB}

AB\overset{\frown}{AB}

ABC\overline{ABC}

ABC\underline{ABC}

1+2++100\overbrace{1+2+\cdots+100}

50501+2++100\begin{matrix}5050\\\overbrace{1+2+\cdots+100}\end{matrix}

1+2++100\underbrace{1+2+\cdots+100}

1+2++1005050\begin{matrix}\underbrace{1+2+\cdots+100}\\5050\end{matrix}

i=1naii=1nai\sum_{i=1}^na_i \sum\limits_{i=1}^na_i

i=1naii=1nai\prod_{i=1}^na_i \prod\limits_{i=1}^na_i

i=1naii=1nai\coprod_{i=1}^na_i \coprod\limits_{i=1}^na_i

limnxnlimnxn\lim_{n\to\infty}x_n \lim\limits_{n\to\infty}x_n

NNexdx\int_{-N}^{N}e^x\,dx

MNdxdy\iint_M^Ndx\,dy

MNdxdydz\iiint_M^Ndx\,dy\,dz

Cx3dx+4y2dy\oint_Cx^3\,dx+4y^2\,dy

1np1np\bigcap_1^np \bigcap\limits_1^np

1np1np\bigcup_1^np \bigcup\limits_1^np

12=0.5\frac{1}{2}=0.5

12=0.5\tfrac{1}{2}=0.5

12=0.51x+3y+15\dfrac{1}{2}=0.5 \dfrac{1}{x+\dfrac{3}{y+\dfrac{1}{5}}}

(nm)=(nnm)=Cnm=Cnnm\dbinom{n}{m}=\dbinom{n}{n-m}=C_n^m=C_n^{n-m}

(nm)=(nnm)=Cnm=Cnnm\tbinom{n}{m}=\tbinom{n}{n-m}=C_n^m=C_n^{n-m}

(nm)=(nnm)=Cnm=Cnnm\binom{n}{m}=\binom{n}{n-m}=C_n^m=C_n^{n-m}

abcd\begin{vmatrix}a&b\\c&d\end{vmatrix}

abcd\begin{Vmatrix}a&b\\c&d\end{Vmatrix}

[abcd]\begin{bmatrix}a&\cdots&b\\\vdots&\ddots&\vdots\\c&\cdots&d\end{bmatrix}

{acbd}\begin{Bmatrix}a&c\\b&d\end{Bmatrix}

(acbd)\begin{pmatrix}a&c\\b&d\end{pmatrix}

{Acd}x121234\begin{vmatrix} \begin{Bmatrix}A & \\ c & d \end{Bmatrix} & x\\ \dfrac{1}{2} & \begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix} \end{vmatrix}

{2x+9y5z=104x+20y+z=24x12y+3z=8\begin{cases}2x+9y-5z=10\\4x+20y+z=24\\x-\dfrac{1}{2}y+3z=8\end{cases}

f(x)=(x+1)2=x2+2x+1\begin{aligned}f(x) & = (x + 1)^2 \\ & = x^2 + 2x + 1\end{aligned}

a1=1a2=2an=n\begin{aligned}a_1 & = 1 \\ a_2 & = 2 \\ & \dots \\ a_n & = n\end{aligned}

xyz82423910343abc\begin{array}{|c|c||c|}x&y&z\\8&2&4\\2&3&9\\10&\dfrac{3}{4}&\sqrt{3}\\a&b&c\end{array}

ABΓΔEZHΘA B\Gamma\Delta EZH\Theta

IKΛMNΞOΠIK\Lambda MN\Xi O\Pi

PΣTΥΦXΨΩP\Sigma T\Upsilon\Phi X\Psi\Omega

αβγδϵζηθ\alpha\beta\gamma\delta\epsilon\zeta\eta\theta

ικλμνξοπ\iota\kappa\lambda\mu\nu\xi\omicron\pi

ρστυϕχψω\rho\sigma\tau\upsilon\phi\chi\psi\omega

εϝϰϖ\varepsilon\digamma\varkappa\varpi

ϱςϑφ\varrho\varsigma\vartheta\varphi

\aleph\beth\gimel\daleth

ABCDEFGHIJKLMNOPQRSTUVWXYZ\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}

ABCDEFGHIJKLMNOPQRSTUVWXYZ\mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}

abcdefghijklmnopqrstuvwxyz\mathbf{abcdefghijklmnopqrstuvwxyz}

0123456789\mathbf{0123456789}

ABΓΔEZHΘ\mathit{A B\Gamma\Delta EZH\Theta}

IKΛMNΞOΠ\mathit{IK\Lambda MN\Xi O\Pi}

PΣTΥΦXΨΩ\mathit{P\Sigma T\Upsilon\Phi X\Psi\Omega}

0123456789\mathit{0123456789}

ABCDEFGHIJKLMNOPQRSTUVWXYZ\mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ}

abcdefghijklmnopqrstuvwxyz\mathrm{abcdefghijklmnopqrstuvwxyz}

0123456789\mathrm{0123456789}

ABCDEFGHIJKLMNOPQRSTUVWXYZ\mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ}

abcdefghijklmnopqrstuvwxyz\mathtt{abcdefghijklmnopqrstuvwxyz}

ABΓΔEZHΘ\mathtt{A B\Gamma\Delta EZH\Theta}

IKΛMNΞOΠ\mathtt{IK\Lambda MN\Xi O\Pi}

PΣTΥΦXΨΩ\mathtt{P\Sigma T\Upsilon\Phi X\Psi\Omega}

0123456789\mathtt{0123456789}

ABCDEFGHIJKLMNOPQRSTUVWXYZ\mathsf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}

abcdefghijklmnopqrstuvwxyz\mathsf{abcdefghijklmnopqrstuvwxyz}

ABΓΔEZHΘ\mathsf{A B\Gamma\Delta EZH\Theta}

IKΛMNΞOΠ\mathsf{IK\Lambda MN\Xi O\Pi}

PΣTΥΦXΨΩ\mathsf{P\Sigma T\Upsilon\Phi X\Psi\Omega}

0123456789\mathsf{0123456789}

ABCDEFGHIJKLMNOPQRSTUVWXYZ\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}

0123456789\mathcal{0123456789}

ABCDEFGHIJKLMNOPQRSTUVWXYZ\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}

abcdefghijklmnopqrstuvwxyz\mathfrak{abcdefghijklmnopqrstuvwxyz}

0123456789\mathfrak{0123456789}

ABCDEFGHIJKLMNOPQRSTUVWXYZ\scriptstyle\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ}

abcdefghijklmnopqrstuvwxyz\scriptstyle\text{abcdefghijklmnopqrstuvwxyz}

0123456789\scriptstyle\text{0123456789}

xyzx y z

x y z中文\text{x y z} \text{中文}

if n is even\text{if }n\text{ is even}

(12)(1x+23)(\dfrac{1}{2}) (\dfrac{1}{x+\dfrac{2}{3}})

(12)(1x+23)\left(\dfrac{1}{2}\right) \left(\dfrac{1}{x+\dfrac{2}{3}}\right)

(12)\left(\dfrac{1}{2}\right)

[12]\left[\dfrac{1}{2}\right]

{12}\left\{\dfrac{1}{2}\right\}

12\left\langle\dfrac{1}{2}\right\rangle

12\left|\dfrac{1}{2}\right|

12\left\|\dfrac{1}{2}\right\|

12\left\lfloor\dfrac{1}{2}\right\rfloor

12\left\lceil\dfrac{1}{2}\right\rceil

/12/\left/\dfrac{1}{2}\right/

\12\\left\backslash\dfrac{1}{2}\right\backslash

12\left\uparrow\dfrac{1}{2}\right\uparrow

12\left\Downarrow\dfrac{1}{2}\right\Downarrow

12\left\updownarrow\dfrac{1}{2}\right\updownarrow

<12/\left<\dfrac{1}{2}\right/

(12,1]\left(\dfrac{1}{2},1\right]

(12\left(\dfrac{1}{2}\right.

12]\left.\dfrac{1}{2}\right]

([{<x>}])\Bigg(\bigg[\Big\{\big<x\big>\Big\}\bigg]\Bigg)

x ⁣yx\!y

xyxy

xyx\,y

x  yx\;y

x yx\ y

xyx\quad y

xyx\qquad y